ABSTRACT
Organo-metal halide perovskite demonstrates a large potential for achieving highly efficient photovoltaic devices. The scaling up process represents one of the major challenges to exploit this technology at the industrial level. Here, the scaling up of perovskite solar modules from 5x5 cm2 to 10x10 cm2 substrate area is reported by blade coating both the CH3NH3PbI3 perovskite and the Spiro-OMeTAD layers. The sequential deposition approach is used in which both lead iodide (PbI2) deposition and the conversion step are optimized by using additives. The PbI2 solution is modified by adding methylammonium iodide (MAI) which improve perovskite crystallinity and pore filling of the mesoporous TiO2 scaffold. Optimization of the conversion step is achieved by adding a small concentration of water into the MAI-based solution, producing large cubic CH3NH3PbI3 grains. The combination of the two modifications lead to a power conversion efficiency of 14.7% on a perovskite solar module with an active area of 47 cm2.
Fabio Matteocci, Luigi Vesce, Felix Utama Kosasih, Luigi Angelo Castriotta, Stefania Cacovich, Alessandro Lorenzo Palma, Giorgio Divitini, Caterina Ducati, Aldo Di Carlo
DOI: 10.1021/acsami.9b05730
Applied Materials and Interfaces 2019, vol. 11, pp. 25195-25204
https://pubs.acs.org/doi/10.1021/acsami.9b05730