We fabricated the first perovskite-based monolithic series-type module showing very promising results in terms of the power conversion efficiency, the reproducibility of the fabrication process and long-term stability. To achieve these results, important innovative procedures were implemented in order to realize an efficient up-scaling process including:
- a customised formulation of TiO2 paste to realize a uniform thin titania scaffold by Screen Printing technique
- a proper cleaning procedure of the CH3NH3PbI3-xClx on the interconnection area between single cells to realize a patterned perovskite deposition
- a c-TiO2 patterned deposition
Furthermore, two different HTMs were used, i.e. the Spiro-OMeTAD and the P3HT polymer both reaching a PCE equal to 5.1%. The P3HT was utilized as cost-effective alternative material also to test the reproducibility of the fabrication process. These fabrication processes were here used for the first time to define a reproducible fabrication procedure applicable to large area. To achieve better performance in terms of PCE and long-term stability, future developments will concentrate on the study of efficient sealants, the optimisation of the perovskite deposition and the cleaning procedure of the interconnection area between neighbouring cells.
F. Matteocci, S. Razza, F. Di Giacomo, S. Casaluci, G. Mincuzzi, T. M. Brown, A. D'Epifanio, S. Licoccia and A. Di Carlo
"Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process"
DOI: 10.1039/C3CP55313B