ABSTRACT
In today's fast‐paced and well‐connected world, consumer electronics are evolving rapidly. As a result, the amount of discarded electronic devices is becoming a major health and environmental concern. The rapid expansion of flexible electronics has the potential to transform consumer electronic devices from rigid phones and tablets to robust wearable devices. This means increased use of plastics in consumer electronics and the potential to generate more persistent plastic waste for the environment. Hence, today, the need for flexible biodegradable electronics is at the forefront of minimizing the mounting pile of global electronic waste. A “bioadvantaged” approach to develop a biodegradable, flexible, and application‐adaptable electronic components based on crop components and graphene is reported. More specifically, by combining zein, a corn‐derived protein, and aleuritic acid, a major monomer of tomato cuticles and sheellac, along with graphene, biocomposite conductors having low electrical resistance (≈10 Ω sq−1) with exceptional mechanical and fatigue resilience are fabricated. Further, a number of high‐performance electronic applications, such as THz electromagnetic shielding, flexible GHz antenna construction, and flexible solar cell electrode, are demonstrated. Excellent performance results are measured from each application comparable to conventional nondegrading counterparts, thus paving the way for the concept of “plant‐e‐tronics” towards sustainability.
Susana Guzman‐Puyol, Luca Ceseracciu, Luca La Notte, Andrea Reale, Jun Ren, Yijie Zhang, Lei Liu, Mario Miscuglio, Patrizia Savi, Simonluca Piazza, Marti Duocastella, Giovanni Perotto, Athanassia Athanassiou, Ilker S. Bayer
DOI: 10.1002/adsu.201800069
05 August 2018
Advanced Sustainable Systems
https://onlinelibrary.wiley.com/doi/full/10.1002/adsu.201800069